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Abstract. Recursive Neural Network has been successfully used in
sentence-level sentiment analysis for language compositionality based on
structured parsing trees. Later on, several modified versions are proposed. These
models either treat word vectors as model parameters or employ pre-trained
word vectors as input. The former has the advantage of learning task specific
word vectors but has much larger parameter size. The later has the advantage
of using the encoded semantic information in the vectors and has much smaller
parameter size but the general word vectors may be not task-specific. In this
work, we propose a hidden recursive neural network (HRNN) which can take the
advantages of both learning word vectors and using pre-trained word vectors.
This model takes the pre-trained word vectors as the input and adds one hidden
layer to extract task-specific representation. Then the recursive composition
process is performed in the hidden space. We perform extensive experiments
on several sentence classification tasks and results show that our proposed
model outperforms both methods and the other baselines, which indicates the
effectiveness of our proposed model.
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1 Introduction

Sentence classification requires appropriate feature representations. Traditional
methods are mainly based on manually defined features such as bag-of-words,
sentiment lexicon, n-grams, etc [17,31]. In recent years, word vector representation,
obtained through neural network as a dense and low dimensional vector in an
unsupervised way, shows promising result on many tasks of natural language
processing [3,14]. The word vectors can encode semantic information.
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Inspired by the word vector representation, different methods are proposed to
infer dense vector representation of longer text, such as phrases and sentences,
and then apply it to task specific sentence-level classification problems such as the
sentence-level sentiment analysis. Recursive neural network (RNN) shows promising
result on inferring semantic representation of longer text units based on structured
parsing trees [26].

This model computes phrase and sentence representation recursively in a bottom-up
approach based on syntactic parsing trees. Several modified versions are proposed
based on the original RNN, such as the Matrix-vector Recursive Neural Network
[25], the Recursive Neural Tensor Network [28], the Adaptive Recursive Neural
Network (AdaRNN) [5], the deep recursive neural network (DRNN) [10], the
tagging-specific recursive neural network [23], and the Gated Recursive Neural
Network (GRNN) [2], etc.

Some models, such as the RNN, MV-RNN, RNTN and AdaRNN, treat the word
vectors as model parameters and the word vectors are learned during training the model
so that the learned word vectors are more task specific. However, this will make the
model parameters increase linearly with the vocabulary size, which will need much
larger training data size. That is why the vector dimension is set to about 25 in the
original RNN, MV-RNN and RNTN, much smaller compared to the dimension of the
commonly used pre-trained word vectors.

In contrast, some models, such as the DRNN and GRNN, use pre-trained word
vectors as input, which can reduce the model parameters and this also helps to
make full use of the encoded semantic information in the word vectors. However,
pre-trained word vectors are designed for general semantic representation, which cannot
contain sufficient task specific knowledge compared to learning the word vectors as
model parameters.

Intuitively, if the semantic meaning of a word is fully encoded into a dense vector,
we should be able to infer the task specific subspace representation, and then perform
the recursive composition in this subspace. The hierarchical deep learning model has
been shown to be able to extract higher level abstract representation [13]. Based on the
above analysis, we propose a new RNN model to take the advantages of both learning
the word vectors and using pre-trained word vectors.

This model employs the pre-trained word vectors as input to make use of the
semantic information encoded in the vectors and adds one hidden layer beyond the
input layer to extract task specific information. Then, the recursive composition is
performed in the hidden space. We perform extensive experiments on several sentence
classification tasks and the results indicate that our proposed model outperforms both
the RNN model that learns the word vectors and the RNN model that simply employs
pre-trained word vectors as input. Our model also outperforms other baselines on most
of the datasets.

The rest of the paper is organized as follows. Section 2 introduces related work
on sentence level classification problem, especially for the sentence representation
learning. Section 3 goes into the details of the original RNN model, and based on this,
we introduce the details of our model in section 4. Section 5 shows the experiments and
result analysis. Section 6 gives the conclusion and future work.

64

Minglei Li, Qin Lu, Yunfei Long, Lin Gui

Research in Computing Science 141, 2017 ISSN 1870-4069



2 Related Work

All classification models at the sentence level are based on sentence representation.
Traditional representation methods are mainly based on manual features, such
as n-grams, word lexicon, POS tags or manual defined rules [24,17]. These
methods treat a word as a symbol and cannot consider the relationship between
words, such as antonyms and synonyms. They also fail to consider the word
order information. The word vector (also called word embedding) can encode the
semantic information of a word into a low-dimensional and dense vector, such as
it can encode the following relationships between the corresponding word vectors:
”king”-”queen”=”man”-”woman” or ”China”-”Beijing”=”France”-”Paris” [14].
Such word representation can be used to learn higher level representations such as a
phrase or a sentence.

Previous methods to infer phrase level representation from word representation
include vector average, addition, and element-wise multiplication [15,16]. Baroni also
considers POS categories of words that a noun is used as a vector whereas adjectives,
adverbs, and verbs form a matrix to modify the properties of the noun [1]. Recently,
neural network based models are proposed. For example, the recurrent neural network
is used to infer sentence representations for sentiment classification [11].

The convolutional neural network is employed for sentence classification [12]. This
model does not consider the syntactic structure information of a sentence. Based on the
structured parsing tree, the recursive neural network (RNN for short) model represents
a tree node as a vector and the parent node is computed from the child nodes through
a matrix composition function [26]. The Matrix-Vector Recursive Neural Network
(MV-RNN) modifies the RNN by representing a node through a vector and a matrix
so that it can consider the relation between the child nodes. In Recursive Neural Tensor
Network (RNTN), the composition function is a global tensor instead of a matrix [28].

The Adaptive Recursive Neural Network (AdaRNN) employs n composition
function during the recursive process and the parent node’s representation is the
weighted addition of the n composition functions [5]. This model treats the word
vectors as parameters without employing the pre-trained word vectors. Distinguishing
the phrase types, the Phrase Recursive Neural Network (PRNN) uses two sets of
composition functions for the inter-phrases and outer-phrases respectively [19]. This
model takes pre-trained word vectors as input without learning the word vectors.

Taking the syntactic information into consideration, Qian [23] proposes the POS
tagging-specific recursive neural network that learns different composition functions
for different kinds of POS tagging and also learns tagging-specific embedding to be
concatenated after the word embedding during the composition process. This model
also employs pre-trained word vectors as input. A gated recursive neural network is
proposed that employs a full binary tree structure to control the composition process
through two kinds of gates [2].

3 The Recursive Neural Network Model

The original RNN is used for sentence-level sentiment analysis task, however, it can be
used in any sentence-level classification task.
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Fig. 1. RNN for sentiment analysis. It is trained based on the constraint of the sentiment label
of every node. The word vectors are treated as model parameters and are learned simultaneously
during training the model.

For easy discussion, we will take the sentiment analysis as a classification example
to explain the model. The structure of RNN [26] for sentiment analysis is shown
in Figure 1. Given a structured representation of a sentence, such as the syntactic
parsing tree, RNN computes the node’s representation in a bottom-up style. To be more
specific, given the vector representations of the left child vl and the right child vr, the
representation of its parent vp, is computed using the following formula:

vp = σ

(
W

[
vl

vr

]
+ b

)
, (1)

where W ∈ Rd×2d and b ∈ Rd×1 are the composition parameters shared by all the
nodes; vl and vr ∈ Rd×1; d is the dimension of the nodes’ vectors; σ is the activation
function. In the original RNN, the vector of the leaf node is treated as model parameters
and is also learned during training the model. So the leaf nodes’ vectors consist of a
parameter matrix L ∈ R|V |×d where |V | is the vocabulary size of the training data.
After obtaining the node’s vector representation, the node’s label is predicted through
softmax function:

yi = g (Wsvi + bs) , (2)

where yi ∈ RK is the output class vector and K is the class number; g is the softmax
function; Ws ∈ RK×d and bs ∈ RK×1 are the weight matrix and bias, respectively. The
original model predicts every internal node’s label to constrain the recursive process.
The loss function consists of cross entropy and L2 regularization:

J(θ) = −
m∑
i

K∑
j

tj log(yj) + λ ∥θ∥2 , (3)

where tj and yj are the gold label and predicted label respectively; K is the class
number; m is the training sample number; θ = {W,Ws, b, bs, L} is the set of model
parameters; λ is the regularization parameter.

The original RNN model treat the word vectors as model parameters, which can learn
more task-specific word vectors.
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Fig. 2. HRNN for sentiment analysis. Pre-trained word vectors (below the dotted line) serves
as the input and one hidden layer is added(above the dotted line) as the representation of the
leaf nodes.

However, this will make the parameters space increase linearly with the vocabulary
size. The pre-trained word vectors, such as the public available word2vec [14] or Glove
[22], have also been used as input vector of the leaf nodes in the latter work [10,29,2].
This can make use of the encoded semantic information in the word vectors but the
pre-trained word vectors are designed for the general word meaning, which can not
be task-specific.

4 Our Proposed Model

To be able to employ the advantage of learning task-specific representation and the
pre-train word vectors, we propose our model as shown in Figure 2. Compared to RNN,
we employ the pre-trained word vectors as input and add one hidden layer to extract the
task-specific representation, which can not only make use of the semantic information
encoded in the word vectors, but also learn the task-specific representation without
increasing the model parameters.

For this reason, we refer to our proposed model as the Hidden Recursive Neural
Network (HRNN). In the HRNN model, the representation of a leaf node j is
calculated by:

vj = σ
(
WIv

I
j + bI

)
, (4)

where vI
j is the pre-trained word vector of word j, WI and bI are the model parameters

shared between the input layer and the hidden layer to extract task-specific information,
and σ is the activation function. The representations of all non-leaf nodes are calculated
using Formula 1.

In addition, during the training process, the recursive process of the original RNN is
constrained by the sentiment label of the internal nodes because it predicts every node’s
label. This limits the model’s applications because it can only be trained on the corpus
of the Stanford Sentiment Treebank (SST) [28], which is the only fully annotated corpus
at every phrase.
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This makes it difficult to be applied to other sentence classification tasks as
annotating every node in the trees is very labor intensive. To extend this model to other
tasks, we remove the label constraint of the internal nodes and only predict the label of
the root node.

Intuitively, if the pre-trained word vectors have encoded the general semantic
meaning and the recursive process can infer the higher phrases’ representation, the
constraint of task-specific label (such as sentiment label) can make the higher phrases’
representation deviated from the original semantic meaning and this may have adverse
effect on the final sentence representation because the deviation may accumulate during
the recursive process.

If this intuition is true, annotating all the phrases in the parsing tree is not worthy.
We will perform experiments to test the effect of this simple modification. The output
of the root node is calculated using softmax:

y = g(Wsvroot + bs), (5)

where vroot is the root node’s vector representation and g is the softmax function. The
loss function is the same as Formula 3 and θ = {WI ,W,Ws, bI , b, bs}.

5 Performance Evaluation

We conduct two experiments to test the effect of our two modifications. The first
experiment is designed to investigate the effect of removing the label constraint of
the internal nodes. The second experiment is designed to test the effectiveness of our
proposed model that employs the pre-trained word vectors and adds one hidden layer.

Parameter Setting. For the activation function, we use the rectifier linear activation
f(x) = max{0, x}, which shows better result than Sigmoid function in previous
work [10]. For model training, we use back propagation [7] through the stochastic
gradient descent algorithm of mini-batch AdaGrad [6].

The original learning rate for the hyper-parameter is set to 0.01 and the regularization
parameter λ is set to 0.0001. The mini-batch size is set to 50 and maximum epoch
number is set to 100. For the word vectors, we test a number of pre-trained word vectors
such as the 300-dimensional Google word vector1 trained on Google News dataset [14],
and Glove with different dimensions trained on different datasets [22].

The 300-dimensional Glove840B trained on 840 billion tokens of common crawl
data2 achieves the best result, so we choose this in the following experiments. For
unknown words, we randomly initialize them. No fine-tuning is performed on the
pre-trained vectors like the work in [12] because we assume that the pre-trained word
vectors represent the general word meanings and the hidden layer is responsible for
sentiment specific information extraction.

1code.google.com/p/word2vec/
2nlp.stanford.edu/projects/glove/
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(a) Result for the fine-grained task.
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(b) Result for the binary task.

Fig. 3. The performance (accuracy) of RNN under different settings with or without the label
constraint. RNN-L: The RNN model that learns the word vectors. RNN-V: The RNN model
that uses the pre-trained word vectors as input. HRNN: Our proposed model. The black box
(Constraint) is the result with label constraint and the red box (No Constraint) is the result without
label constraint.

5.1 Experiment 1

This experiment aims to test the effect of removing the label constraint of the
internal nodes. We test the performance of the RNN-based models with or without the
label constraint.

The tested models include the RNN model that treats word vectors as model
parameters (denoted as RNN-L, where L means learning the word vectors), the RNN
model with the pre-trained word vectors as input (denoted as RNN-V where V means
employing pre-trained vectors as input), and the proposed HRNN model that employs
pre-trained word vectors as input and adds one hidden layer.

The word vector dimension of RNN-L is set to 25. The hidden dimension of HRNN
is set to 100.

Since only the Stanford Sentiment Treebank (SST) [28]3 is annotated at every node,
we perform the experiment on this dataset. The SST comes from critic reviews in Rotten
Tomatoes and every sentence is parsed by the Stanford Parser4.

Then, every phrase in the parsing trees is annotated with polarity through the
crowdsourcing platform of Amazon Mechanical Turk. There are two tasks for this
dataset. The first is binary sentiment classification on positive/negative. The second
is more fine-grained classification on five classes: very negative, negative, neutral,
positive, and very positive. We use the standard train/dev/test splits of 6920/872/1821
for the binary classification and 8544/4404/2210 for the fine-grained classification. The
result is shown in Figure 3. As shown in the figure, for different models, the result
with the label constraint all outperforms the result without the label constraint, which

3http://nlp.stanford.edu/sentiment/treebank.html
4http://nlp.stanford.edu/software/lex-parser.shtml
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Table 1. The parameter size of different models. d is the dimension of node’s vector. For RNN-L,
d = 25, for RNN-V, d = 300, for HRNN, d = 100. dv = 300 is the dimension of pre-trained
word vectors. |V | = 18K is the vocabulary size (We use the vocabulary of the fine-grained task
as an example).

Model Model Size #of parameters

RNN-L |V | × d+ 2d× d 451K
RNN-V 2d× d 180K
HRNN dv × d+ 2d× d 50K

indicates that the label constraint of the internal nodes is beneficial for training the RNN
model. However, obtaining such training data is labor intensive. Comparing between the
RNN-L, RNN-V and HRNN shows that learning the vectors achieves the worst result,
this may result from the much larger parameter size.

RNN with pre-trained word vectors (RNN-V) performs better because of the
pre-trained word vectors. HRNN further outperforms RNN-V, which indicates the
effectiveness of the added hidden layer. We will conduct more experiments to validate
this. From this experiment, we can conclude that the label constraint is beneficial for
the RNN model and our model performs better than the original RNN model.

The detail of the different models’ parameters is shown in Table 1. In this table,
the Model Size is the model parameter numbers. Since the softmax weights and bias
of different models are the same, we just ignore this part and only calculate the
composition and word vector part. It shows that the HRNN model has much fewer
parameters than the RNN-L and RNN-V.

5.2 Experiment 2

The second experiment aims to test the effectiveness of our proposed model on other
sentence level classification problems. The evaluation datasets include:

1. MPQA [32]:Binary classification of short texts with positive and negative5.

2. Subj [20]: Classifying sentence as subjective or objective6.

3. MR [21]:Binary classification of movie reviews with positive and negative7.

4. CR [9]: Binary classification of customer review with positive and negative8.

The detailed statistic information of these datasets is shown in Table 2. Since all
these datasets only have the labels at the sentence level, all the RNN-based models
are trained without the label constraint of the internal nodes. To be noted that the best
hidden dimension d varies for different datasets and we only report the best result under
the best hidden dimension. The best d is 100 for MPQA, 90 for MR, 100 for Subj and
90 for CR. HRNN is compared with the following baselines:

5Opinion polarity detection subtask of the MPQA dataset
6www.cs.cornell.edu/people/pabo/movie-review-data/
7www.cs.cornell.edu/people/pabo/movie-review-data/
8www.cs.uic.edu/ liub/FBS/sentiment-analysis.html
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Table 2. Statistics of the datasets. K is the class number. l is the sentence average length of the
dataset. N is the total sample number. |V | is the vocabulary size. |Vpre| is the number of words
present in the pre-trained word vectors. Test is the training the test data size (CV means 10-fold
cross validation).

Dataset K l N |V | |Vpre| Test

MPQA 2 3 10606 6225 6205 CV

Subj 2 23 10000 22361 20898 CV

MR 2 20 10662 19994 18632 CV

CR 2 19 3771 5624 5481 CV

1. RNN-V: The original RNN model with pre-trained word vectors as input and without
hidden layer.

2. RNN-L: The original RNN model that treats the word vectors as model parameters.

3. CNN-static [12]: Using convolutional neural network that employs pre-trained word
vectors as input and the word vectors are fixed without fine-tuning.

4. CNN-non-static [12]: Using convolutional neural network that employs pre-trained
word vectors as input and the word vectors are fine-tuned during training the model.

5. CNN-multichannel [12]: Same architecture as CNN-non-static but with two sets of
pre-trained word vectors.

6. RAE [27]: Recursive autoencoders with pre-trained word vectors trained
from Wikipedia.

7. CCAE [8]: Combining the power of recursive, vector-based models with the
linguistic intuition of the CCG formalism.

8. Sent-Parser [4]: Sentiment analysis specific parser that directly analyzes the
sentiment structure of a sentence.

9. NBSVM and MNB [31]: Naive Bayes SVM and Multinomial Naive Bayes with the
variant of uni-bigrams.

10. G-Dropout and F-Dropout [30]: Gaussian dropout and fast dropout.

11. Tree-CRF [18]: A dependency tree based method for sentiment classification of
subjective sentences using conditional random fields with hidden variables.

12. CRF-PR [33]: Encoding the intuitive lexical and discourse knowledge as expressive
constraints and integrating them into the learning of the conditional random filed
model via posterior regularization.

The results are shown in Table 3 and as shown in the first three rows, the RNN-V
performs much better than the RNN-L on all the five datasets, which again indicates
that employing pre-trained word vectors is better than learning the word vectors.
The proposed HRNN outperforms the RNN-V and RNN-L models on all the five
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Table 3. Performance (accuracy) of different models on different datasets. The top three results
in each dataset are marked as bold. The symbol ”-” means that no result is reported by the author
on the corresponding dataset.

Model MPQA MR Subj CR

HRNN 90.1 81.2 93.8 84.9
RNN-V 88.7 80.4 92.8 83.4
RNN-L 85.4 73.1 90.7 74.6

CNN-static 89.6 81.0 93.0 84.7
CNN-non-static 89.5 81.5 93.4 84.3
CNN-multichannel 89.4 81.1 93.2 85.0

RAE 86.4 77.7 - -
CCAE 87.2 77.8 - -
Sent-Parser 86.3 79.5 - -
NBSVM 86.3 79.4 93.2 81.8
MNB 86.3 79.0 93.6 80.0
G-dropout 86.1 79.0 93.4 82.1
F-dropout 86.3 79.1 93.6 81.9
Tree-CRF 86.1 77.3 - 81.4
CRF-PR - - - 82.4

datasets, which again indicates the effectiveness of the added hidden layer. Comparing
the RNN-based models with the CNN-based models shows that if the RNN model
simply employs the pre-trained word vectors as input, its performance is worse than
the CNN-based models on all the datasets.

However, after adding one hidden layer, our HRNN model performs slightly better
than all the other baselines on the MPQA and Subj datasets and also achieves
comparable results with the best performance on the MR and CR datasets.

The advantage of our model is more obvious on the MPQA dataset. This may result
from the fact that the average sentence length in MPQA is much shorter than that in
other datasets (shown in Table 2) and the syntactic parsing result on MPQA is more
accurate than that on other datasets.

In conclusion, as shown in experiment 1 and experiment 2, by simply adding one
hidden layer on the pre-trained word vectors, our model can improve the performance
of the original RNN model.

6 Conclusion and Future Work

In this paper, we propose the hidden recursive neural network (HRNN) that can leverage
the advantages of both using pre-trained word vectors and learning the word vectors,
which are two common strategies used in the recursive neural network. Experiments on
several sentence classification tasks show that using pre-trained word vectors is better
than learning the word vectors and our model performs better than both of them.

We also investigate the effect of the label constraint of the internal nodes during
training the RNN model and the experiment shows that the label constraint is better
than no label constraint.
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Since the performance of the RNN-based model relies on the pre-trained word
vectors, we will investigate better ways to learn more expressive word vectors in the
future. In addition, we will also investigate the effect of the syntactic parsing trees on
the performance of the RNN-based model.
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